В результате выполнения проекта будут получены следующие результаты:
1. Будут установлены основные особенности поведения перспективных магнитокалорических материалов в переменных магнитных полях большой частоты. Будут получены температурные и частотные зависимости МКЭ, установлен механизм зависимости МКЭ от частоты и величины магнитного поля.
2. Будет установлена природа гигантского МКЭ в материалах с магнитоструктурными фазовыми переходами и определены соответствующие вклады магнитной, решеточной и электронной подсистем твердого тела в общий МКЭ.
Это позволит вести целенаправленный поиск материалов для технологии магнитного охлаждения, так как будет ясно, в каком направлении необходимо вести синтез новых материалов - увеличение магнитного или решеточного вкладов. В настоящий момент эта задача не решена, и ее решение будет соответствовать мировому уровню исследований.
3. Будет установлен механизм влияния релаксационных явлений на величину магнитокалорического эффекта.
Исследования влияния релаксационных явлений на величину МКЭ до сих пор не проводились, и решение этой задачи позволит разделить материалы на классы перспективных и неперспективных с точки зрения поведения в переменных магнитных полях. В дальнейшем усилия исследователей могут быть направлены на поиск и синтез материалов с малыми временами релаксаций магнитных и магнитоструктурных фазовых переходов.
4. Для различных классов магнитокалорических материалов будут установлены температурные, полевые и частотные интервалы, в которых наблюдаются большие значения МКЭ при циклических воздействиях магнитного поля.
Установление интервалов обратимости магнитных и магнитоструктурных переходов позволит установить температурные, магнитополевые и частотные области использования исследованных материалов в технологии магнитного охлаждения.
5. Будут исследована временная зависимость МКЭ под действием большого количества циклов включения/выключения магнитного поля, и установлена природа деградации магнитокалорических свойств некоторых магнитокалорических материалов, и возможные пути восстановления исходных свойств.
Физическая и механическая прочности являются важнейшими параметрами для использования функциональных материалов. Планируемые к получению результаты помогут определить оптимальную структуру материалов. Исследование физической и механической прочности материалов в кристаллическом, поликристаллическом или наноструктурированном виде позволит определить оптимальную структуру материалов, используемых в качестве рабочего тела в магнитных холодильных машинах.
6. Будут разработаны методы исследования магнитных фазовых переходов в переменных магнитных полях. Будет исследована динамика структурного и магнитного переходов и оценены характерные времена релаксации. На основе полученных данных по динамике МКЭ будут разработаны различные возможные методы оценки и разделения различных вкладов по их отклику на переменное магнитное поле.
7. Будут оценены времена релаксации магнитных моментов и выравнивания магнонной и фононной температур в материалах с большой магнитострикцией. Будут получены температурные зависимости намагниченности магнитного материала с параметром порядка, зависящим от магнитострикции, а также проведены оценки МКЭ при различных значениях параметров задачи.
8. Будет получена детальная информация (свободная энергия, размеры магнитных доменов) о магнитном упорядочении в интерфейсах различных магнитных материалов и проведены оценки намагниченности, энтропии и МКЭ вблизи фазового перехода. Будет оценен МКЭ в низкоразмерных магнитных материалах с характерными размерами, при которых зависимость флуктуаций от размеров достаточно сильная.
9. Наиболее важные из полученных результатов будут представлены в виде 3-х мерных моделей и анимаций. Это важно для наглядности при представлении результатов на научных мероприятиях, для популяризация полученных результатов в средствах массовой информации, включая телевидение и интернет, эти модели также могут быть использованы при чтении спецкурсов на физических факультетах университетов.
Результаты (
английский) 1:
[копия]Скопировано!
As a result of the project will be obtained the following results:1. Will the basic behaviors of prospective magnitokaloričeskih materials in a variable magnetic fields large frequency. Will be received by the temperature and frequency dependence of MEE, MEE dependencies mechanism installed on the frequency and magnitude of the magnetic field.2. Will the nature of the giant in FEM magnitostrukturnymi materials with phase transitions and magnetic deposits have been identified, the lattice and electronic subsystems of solids in General MEE. This will get you targeted search materials for magnetic refrigeration technology, as will be clear in what direction must be the synthesis of new materials-an increase in magnetic or rešetočnogo. At present this task is not solved, and its solution will correspond to the world standards of research.3. Will the mechanism of the influence of relaxation phenomena in the size magnitokaloričeskogo effect.The influence of relaxation phenomena in the size of the FEA had still not been carried out, and this task will divide materials into classes of prospective and unviable in terms of behaviour in the variable magnetic fields. Further research effort can be directed to search and synthesis materials with small at times, the relaxations of the magnetic and magnetostructural phase transitions.4. For different classes of magnitokaloričeskih materials will be set temperature, field and frequency intervals in which there are great values in FEM cyclical effects of the magnetic field.Setting intervals reversibility of magnetic and magnetostructural transitions will install thermal, magnitopolevye and frequency field of use of the materials studied magnetic refrigeration technology.5. Be investigated temporal dependence FEM under the influence of a large number of on/off cycles of the magnetic field, and the nature of the degradation of magnitokaloričeskih properties of some magnitokaloričeskih material, and possible ways to restore the original properties.Physical and mechanical strength are important parameters for the use of functional materials. Expected to receive the results will help determine the optimal structure of materials. Study of physical and mechanical strength of materials in crystalline, polycrystalline or nanostrukturirovannom form will determine the optimal structure of materials used as a working body in magnetic refrigeration machines.6. research methods will be developed magnetic phase transitions in variable magnetic fields. Will the dynamics of structural and magnetic transitions and appreciated characteristic relaxation times. On the basis of the received data on the dynamics of the FEA will be developed various possible methods of assessment and separation of various contributions on their response to an oscillating magnetic field.7. Will be evaluated by magnetic moments of relaxation times and temperatures the Phonon and magnonnoj alignment in materials with large magnetostriction. Temperature dependences of magnetization are obtained of magnetic material with a parameter dependent magnetostriction order, as well as evaluation of FEM with different values of the parameters of the task.8. more detailed information is obtained (free energy, the size of magnetic domains) on the magnetic ordering in different interfaces of magnetic materials and conducted evaluation of magnetization, entropy and MEE near the phase transition. Will be evaluated by the FINITE ELEMENT METHOD in low-dimensional magnetic materials with specific dimensions, in which the dependence of fluctuations of sizes is strong enough.9. the most important of the obtained results will be presented in the form of 3-dimensional x models and animations. This is important for visibility when presenting the results at scientific events for popularization of the results obtained in the mass media, including television and the Internet, these models can also be used when reading the special courses on physical faculties of universities.
переводится, пожалуйста, подождите..

Результаты (
английский) 2:
[копия]Скопировано!
As a result of the project will be obtained the following results: 1. Will be established basic properties of promising magnetocaloric materials in alternating magnetic fields high frequency. Will be obtained depending on temperature and frequency FEM, established a mechanism based on the finite element method and frequency of the magnetic field. 2. It will determine the nature of a giant MCE in materials with magnetostructural phase transitions and determined the respective contributions of the magnetic, lattice and electron subsystem of the solid in the overall FEM. This will allow to conduct a targeted search of materials for the technology of magnetic cooling, as will be clear in what direction it is necessary to conduct the synthesis of new materials - increase in the magnetic lattice or deposits. At present, this problem has not been solved, and its solution will meet the world standards of research. 3. It will set the mechanism of relaxation phenomena influence on the value of the magnetocaloric effect. Studies of the effect of relaxation phenomena on the value of the finite element method has not yet been carried out, and the solution to this problem will be divided into classes of materials are promising and unpromising in terms of behavior in alternating magnetic fields. In future research efforts can be directed to the search and synthesis of materials with short relaxation times and magnetic phase transitions magnetostructural. 4. For various classes of magnetocaloric materials will be installed temperature, field and frequency intervals in which there are high values of the FEM with the cyclical effects of the magnetic field. Establishing intervals reversibility of magnetic and magnetostructural transitions allow you to set the temperature, magnetic-field and frequency field of use of the materials studied in the technology of magnetic cooling. 5 . Will investigate the time dependence of the finite element method under the influence of a large number of on / off cycles of the magnetic field and determine the nature of the degradation of magnetocaloric properties of several magnetocaloric materials, and possible ways to restore the original properties. Physical and mechanical strength is an important parameter for the use of functional materials. Planned to getting results will help determine the optimal structure of the materials. Investigation of physical and mechanical strength of the materials in crystalline, or polycrystalline nanostructured form will determine the optimal structure of the materials used as the working fluid in magnetic refrigeration. 6. Methods will be developed for the study of magnetic phase transitions in variable magnetic fields. It will investigate the dynamics of structural and magnetic transitions and to estimate the characteristic relaxation times. On the basis of data on the dynamics of the finite element method will be developed various possible methods of evaluation and separation of various contributions by their response to an alternating magnetic field. 7. Will be evaluated by the relaxation times of the magnetic moments and leveling the magnon and phonon temperature in materials with high magnetostriction. Will The temperature dependence of the magnetization of the magnetic material with an order parameter that depends on the magnetostriction, and an assessment of the FEM for different values of parameters of the problem. 8. It will provide detailed information (free energy, the size of the magnetic domains) of magnetic ordering in the interfaces of different magnetic materials and the estimation of the magnetization, entropy and FEM near the phase transition. It will be appreciated by the finite element method in low-dimensional magnetic materials with characteristic dimensions in which the dependence on the size of the fluctuations is strong enough. 9. The most important of these results will be presented in the form of 3-D models and animations. It is important for clarity in the presentation of the results at scientific events for the popularization of the results in the media, including television and the Internet, these models can also be used for reading special courses on physical faculties of universities.
переводится, пожалуйста, подождите..

Результаты (
английский) 3:
[копия]Скопировано!
as a result of the project implementation will be obtained the following results:
1. there will be the main features of advanced магнитокалорических materials in high frequency variable magnetic fields.the temperature and frequency dependence will be obtained by fea, the mechanism is installed on the frequency dependence of fea and the values of magnetic field.
2.is the nature of the giant fea in materials with магнитоструктурными фазовыми passages and defines the relevant contributions of magnetic, решеточной and electronic subsystems of rigid body in the fea.
this will allow the targeted research for the technology of magnetic refrigeration, as will be made clear.in what direction should be the synthesis of new materials, the magnetic or решеточного deposits. at present, this problem has not been solved, and its decision will be world class research.
3. the mechanism of the influence of relaxation phenomena is a магнитокалорического effect.
study influence of relaxation phenomena by fea is still not carried out.and the solution of this problem allows to divide materials into classes and неперспективных promising from the point of view of behavior in the variable magnetic fields.further efforts of researchers can be directed to the search and synthesis of materials with small sometimes релаксаций magnetic phase transitions and магнитоструктурных.
4.for various classes of магнитокалорических materials will be installed temperature, field and frequency domain, in which there are high values of sce in the cyclical effects of magnetic field.the intervals of reversibility of magnetic and магнитоструктурных crossings will set the temperature.магнитополевые and frequency of studied materials in magnetic refrigeration technology.
5.will the timeline fea under the action of a large number of cycles enable / disable magnetic fieldand established the nature of degradation магнитокалорических properties of some магнитокалорических materials, and possible ways to restore baseline characteristics.the physical and mechanical strength are essential parameters for the use of functional materials. planned to obtain results will help to determine the optimal structure of materials.the study of physical and mechanical strength of materials in crystalline form, поликристаллическом or наноструктурированном will determine the optimal structure of materialsused as a working body in magnetic refrigerating machines.
6. will be developed by the research methods of magnetic phase transitions in the variable magnetic fields.will the dynamics of structural and magnetic transitions and evaluated the characteristic times of relaxation.on the basis of the data on the dynamics of fea will be developed by the various possible methods for the evaluation and separation of the various contributions in response to the variable magnetic field.
7.will be assessed by the time relaxation of magnetic moments and the alignment магнонной and фононной temperatures in materials with large магнитострикцией.the temperature dependence of the magnetic material are received намагниченности parameter order dependent on the магнитострикции and measured at different values of parameters of fea tasks.
8.the detailed information is received (free energy, the size of magnetic domains) on the magnetic alignment of the interfaces of different magnetic materials, and measured the намагниченности,entropy and fea near the phase transition. will be assessed by fea in низкоразмерных magnetic materials with the size in which the dependence of fluctuations of a strong enough.
9.the most important of the results will be presented in the form of a three arm models and animations. this is important for example in providing results of scientific activitiesfor the popularization of the results in the media, including television and the internet, these models can also be used when reading courses on physical faculties of universities.
переводится, пожалуйста, подождите..
