Лазерная диагностика в биологии и медицине.
(1 слайд) Лазерная диагностика в биологии и медицине — новое перспективное направление в фотобиологии, являющееся эффективным средством изучения биологических систем различной степени организации — от биомолекул до клеток, биотканей и отдельных органов животных и человека.
(2 слайд) Применение лазеров в биологии и медицине основано на использовании широкого круга явлений, связанных с разнообразными проявлениями взаимодействия света с биологическими объектами. Лазерное излучение, так же как и обычный свет, может отражаться, поглощаться, рассеиваться, переизлучаться биологической средой, и каждый из этих процессов несет информацию о микро- и макроструктуре этой среды, движении и форме отдельных ее составляющих.
(3 слайд) Классификация лазеров:
1) по типу активного материала;
2) по способу питания;
3) по длине волны;
4) по мощности генерируемого излучения.
(4 слайд) По типу активного материала выделяют следующие типы лазеров:
1) газовые;
2) жидкостные;
3) на твердом теле (твердотельные);
4) полупроводниковые.
(5 слайд) (таблица)
(6 слайд) Из многих уникальных свойств излучения лазера для использования в медицине и биологии наибольшее значение имеют следующие:
1) монохроматичность ;
2) большая интенсивность, отнесенная к единице длины волны;
3) когерентность;
4) поляризация;
5) направленность пучка.
( 7 слайд )Особенности взаимодействия лазерного излучения с тканью.
Воздействие лазерного излучения на биологические структуры зависит от длины волны излучаемой лазером энергии, плотности энергии луча и временных характеристик энергии луча. Когда лазерный луч ударяется о целевую ткань, лазерный свет поглощается, передается, отражается и рассеивается.
(8 слайд) Каждая длина волны лазерного света обладает специфическими характеристиками поглощения при прохождении света в ткань. Когда лазерный свет поглощается определенной тканью, что называется селективным поглощением, ткань нагревается и вызываются различные эффекты, зависящие от количества поглощенной энергии. Эти эффекты могут быть тепловыми, химическими или звуковыми. Пригодность лазера для выполнения определенных процедур сильно зависит от точной длины волны света. При применении лазерного излучения в биологии и медицине следует учитывать основные закономерности взаимодействия оптического излучения и ткани.
(9 слайд) Основные типы взаимодействия лазера с тканью:
1) Нагревание
2) Коагуляция
3) Денатурация
4) Испарение
5) Карбонизация.
(10 слайд) Воздействие лазеров на биологические ткани зависит от:
1) плотности энергии;
2) продолжительности облучения, количества охлаждения;
3) определенной длины волны, режима излучения;
4) характеристик ткани.
(11 слайд) Неоднородная слоистая структура кожи, а также ее состав, в котором доминируют белки, вода и меланин, обусловливают сильное рассеяние и поглощение. Основное ослабление света происходит на глубине залегания трех слоев кожи. Наибольшей глубины проникновения достигает излучение в красной и ИК-области спектра. При этом только 5—20% поглощенной энергии приходится на подкожную клетчатку, остальная ее значительная часть отражается поверхностью кожи и слизистых оболочек.
(12 слайд) С одной стороны, все это обеспечивает возможность использования лазера как эффективного хирургического ножа или эффективного точного устройства для лечения отслоения сетчатки глаза, кариеса, доброкачественных и злокачественных новообразований. С другой стороны, в биостимуляции и лазерной акупунктуре применением лазера (низкоинтенсивного) можно результативно практически в реальном времени на принципе обратной связи (диагностика по месту лечения) диагностировать и стимулировать позитивные энергетические и физиологические процессы (реабилитация). Сфокусированный свет лазера может быть опасен только для глаз и кожи.
(13 слайд) Итак, как неразрушающие, так и разрушающие методы лазерной диагностики являются эффективным средством изучения биологических систем различной
степени организации — от биомолекул до клеток, биотканей и отдельных органов животных и человека. В настоящее время еще трудно оценить все перспективы, открывающиеся перед биомедицинской диагностикой в связи с широким проникновением лазеров в эту область исследований.
Однако нет сомнения в том, что впереди самые удивительные и неожиданные открытия, приближающие внедрение методов и средств лазерной диагностики в практическую медицину и биологию.
Результаты (
английский) 1:
[копия]Скопировано!
Laser Diagnostics in biology and medicine. (slide 1) laser Diagnostics in biology and medicine is a new promising trend in Photobiology, which is an effective means of studying biological systems of varying degrees of organization — from biomolecules to cells, biological tissues and organs of animals and humans. (slide 2) applications of lasers in biology and medicine is based on the use of a wide range of phenomena associated with the diverse manifestations of the interaction of light with biological objects. Laser radiation, just like ordinary light can be reflected, absorbed, dissipate, pereizlučat′sâ biological environment, and each of these processes carries information about micro-and makrostrukture of this environment, movement and form of its individual components. (slide 3) classification of lasers: 1) according to the type of active material; 2) by way of nutrition; 3 wavelength); 4) power laser emission. (slide 4) according to the type of active material entails the following types of lasers: 1) gas; 2) liquid; 3) on solid (solid state); 4) Semiconductor. (slide 5) (table) (slide 6) of the many unique features of laser radiation for use in medicine and biology, the greatest importance are the following: 1) monohromatičnost′; 2) great intensity, related to the unit of wavelength; 3) coherence; 4) polarization; 5) focus the beam. (slide 7) peculiarities of interaction of laser radiation with tissue. Influence of laser radiation on biological structures depends on the wavelength of the emitted laser beam energy density, energy and temporal characteristics of energy beam. When the laser beam hits the target tissue, the laser light is absorbed, reflected, transmitted and scattered. (slide 8) each wavelength of laser light possesses specific characteristics of absorption with the passage of light in the tissue. When the laser light is absorbed by a certain cloth, that is called selective absorption, tissue heats and are called different effects, depending on the amount of energy absorbed. These effects can be thermal, chemical or sound. The suitability of laser to perform certain procedures strongly depends on the precise wavelength of light. In the application of laser radiation in biology and medicine should take into account the basic principles of interaction of optical radiation and tissue. (slide 9) basic types of interaction of laser with tissue: 1) Heat 2) Coagulation 3) Denaturation 4) Evaporation 5) Carbonization. (slide 10) effect of lasers for biological tissue depends on: 1) energy density; 2) exposure times, the number of cooling; 3) of a specific wavelength of the radiation regime; 4) characteristics of the fabric. (slide 11) Inhomogeneous layered structure of the skin, as well as its composition, dominated by whites, water and melanin, make strong scattering and absorption. The main light attenuation occurs at a depth of three layers of the skin. The greatest depth of penetration reaches radiation in the red and infrared spectrum. Only 20% is 5 absorbed energy falls on the hypodermis the rest its a significant part reflected the surface of the skin and mucous membranes. (slide 12) on the one hand, it provides the possibility of using the laser as a surgical knife efficiently or effectively accurate device for treatment of retinal detachment, eye tooth decay, benign and malignant neoplasms. On the other hand, laser biostimulation laser acupuncture (low intensity) can be effectively almost in real time on the principle of feedback (diagnosis according to the place of treatment) diagnose and encourage positive energy and physiological processes (rehabilitation). Focused laser light can be dangerous only for the eyes and skin. (slide 13) so as a non-destructive and destructive methods of laser diagnostics are an effective means of studying biological systems of differentthe degree of organization — from biomolecules to cells, biological tissues and organs of animals and humans. Currently still difficult to evaluate all prospects for biomedical Diagnostics in the broad penetration of lasers in this area of research. There is no doubt, however, that the most amazing and unexpected discoveries, whether the introduction of methods and tools for laser Diagnostics in practical medicine and biology.
переводится, пожалуйста, подождите..

Результаты (
английский) 2:
[копия]Скопировано!
Laser diagnostics in biology and medicine.
(1 slide) Laser diagnostics in biology and medicine - a new perspective direction in photobiology, is an effective tool for studying the biological systems of varying degrees of organization - from biomolecules to cells, tissues and individual organs of animals and humans.
(2 slide ) The use of lasers in biology and medicine is based on the use of a wide range of phenomena associated with the various manifestations of the interaction of light with biological objects. Laser radiation, as well as ordinary light can be reflected, absorbed, scattered, reemitted biological environment, and each of these processes carries information about the micro- and macro-structure of the environment, motion and shape of its individual components.
(Slide 3) Laser classification:
1) the type of active material,
2) a method of feeding;
3) in wavelength;
4) by the power of the generated radiation.
(slide 4) According to the type of the active material are the following types of lasers are:
1) gas;
2) the liquid;
3) solid (solid);
4) semiconductor.
(5 slides) (table)
(6 slide) Of the many unique features of the laser for use in medicine and biology, the most important are the following:
1) the monochromaticity;
2) high intensity per unit wavelength;
3) coherence;
4) polarization;
5) the direction of the beam.
(7 slide) Features of interaction of laser radiation with tissue.
The impact of laser radiation on biological structures depends on the wavelength of the emitted laser energy density of the beam energy and temporal characteristics of the beam energy. When the laser beam hits the target tissue, the laser light is absorbed, transmitted, reflected and scattered.
(Slide 8) Each wavelength laser light has specific absorption characteristics by passing light into the tissue. When the laser light is absorbed by a certain tissue is called selective absorption, the tissue is heated and caused different effects, depending on the amount of absorbed energy. These effects can be thermal, chemical or sound. Suitability of a laser to perform certain procedures depends strongly on the precise wavelength. In the application of the laser radiation in biology and medicine should take into account the basic laws of interaction of optical radiation and tissues.
(9 slide) The main types of interaction of the laser with the tissue:
1) Heating
2) Coagulation
3) Denaturation
4) Evaporation
5) carbonation.
(10 slides) Impact lasers biological tissue depends on:
1) the energy density;
2) the duration of irradiation amounts cooling;
3) specific wavelength, radiation mode;
4) characteristics of the tissue.
(11 slide) inhomogeneous layered structure of the skin, as well as its composition, wherein dominated by whites, water and melanin cause strong scattering and absorption. Main light attenuation occurs at the depth of the three layers of the skin. The greatest depth of penetration of the radiation reaches the red and infrared region of the spectrum. However, only 5-20% of the absorbed energy is due to the subcutaneous tissue, the rest of its substantial part is reflected surface of the skin and mucous membranes.
(Slide 12) on the one hand, it enables the use of the laser surgical knife as an efficient or effective accurate device for treating flaking retina of the eye, tooth decay, benign and malignant tumors. On the other hand, bio-stimulation and laser acupuncture using laser radiation (low intensity) can be effectively in near real time on the principle of feedback (diagnosis for the treatment site) to diagnose and stimulate positive energy and physiological processes (rehabilitation). The focused laser light can be dangerous to the eyes and skin.
(13 slide) Thus, as the non-destructive and destructive methods of laser diagnostics are an effective tool in the study of biological systems of various
degrees of organization - from biomolecules to cells, tissues and individual organs of animals and humans. Currently still difficult to assess all the prospects opening up before biomedical diagnostics due to the extensive penetration of lasers in this area of research.
However, there is no doubt that in front of the most astonishing and unexpected discoveries, approximating the introduction of methods and means of laser diagnostics in practical medicine and biology .
переводится, пожалуйста, подождите..

Результаты (
английский) 3:
[копия]Скопировано!
laser diagnostics in biology and medicine.
(1 slide) laser diagnostics in biology and medicine - a new perspective in photobiology.as an effective tool for studying biological systems of varying degrees of organization from individual биомолекул to cells, biological tissues and organs of humans and animals.
(slide 2) the application of lasers in biology and medicine is based on the use of a wide range of phenomena associated with the various manifestations of the interaction of light with biological objects. laser radiationas usual the light may be reflected, absorbed, to dissipate переизлучаться biological environment, and each of these processes has the information on the micro - and макроструктуре this environmentthe movement and the form of its individual components.
(3 slide) classification of lasers:
1) according to the type of the active material;
2)
3) method of nutrition; wavelength;
4) to the power generated by radiation.
(slide 4) type active material in the following types of lasers:
1)
2) gas; liquid;
3) on a body (твердотельные)
4) semiconductor.
(5 slide) (table).(slide 6) many of the unique properties of laser radiation for use in medicine and biology, the most important are the following:
1) монохроматичность;
2) high intensity, отнесенная per unit wavelength;.3) coherence; polarization;
4) 5) the focus of the beam.
(7 slide) features of interaction of laser radiation with tissue.
the effect of laser radiation on biological structures depends on the length of the waves generated by a laser energy beam power density and temporal characteristics of the energy beam.when the laser beam hits the target tissue, laser light is absorbed, transmitted, reflected and dispersed.
(slide 8) each wave length laser beam has the special characteristics of absorption light passing in the tissue. when the laser light is absorbed by a tissuewhat is called selective absorption, the fabric is heated and are caused by different effects, depending on the amount of energy absorbed by the. these effects may be thermal, chemical, or sound.the suitability of laser to perform certain procedures depends on the exact wavelength of light.in the application of laser radiation in biology and medicine should take into account the main patterns of interaction of optical radiation and tissue.
(9 slide) the main types of laser interaction with tissue:
(1) heating a
2)
3) coagulation денатурация
4) evaporation
5) карбонизация.
(10 slide) the effects of lasers on biological tissue depends on:
1) power density;
2) duration of exposure, the number of cooling;.3) a certain wavelength of radiation;
4) characteristics of the tissue.
(11 slide) слоистая heterogeneous structure of the skin, as well as its composition, dominated by the protein, water, and melanin.have strong scattering and absorption. the weakening of light occurs at the depth of the abundance of three layers of the skin. the greatest depth of penetration reaches the radiation in the red and infrared region of the spectrum.however, only 5% - 20% of the energy is absorbed by the подкожную клетчатку, the rest of it, a large part of the impact surface of the skin and mucous membranes.
(12 on the one hand, slide)this allows the use of a laser as an effective surgical knife or effective exact device for the treatment of retinal отслоения, tooth decaybenign and malignant tumors. on the other hand,in биостимуляции and laser acupuncture using laser (low-level) can be efficiently in near real time on the principle of feedback (the diagnostic place of diagnose and treatment)positive energy and physiological processes (rehabilitation).focused laser light can be dangerous for the eyes and the skin.
(13 slide) as non destructive.and destructive methods of laser diagnostics is an effective tool for studying biological systems of different
degree of organization from биомолекул to cellsindividual biological tissues and organs of humans and animals. currently more difficult to assess all perspectivesopen to biomedical diagnostics in connection with the wide use of lasers in this field of research. "but there is no doubt that in front of the most wonderful and unexpected discoveries.приближающие implementation methods and means of laser diagnostics in practical medicine and biology.
переводится, пожалуйста, подождите..
